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The theory of an ideal fluid stream for the most part adequately describes large cavities 
behind such objects as disks, cones, wedges, etc. In engineering practice, however, the un- 
desirable effects of cavitation makes it important to study its initial stages and, in par- 
ticular, to determine the conditions for the inception of cavitation on a body or the cavita- 
tion number oi (i.e., the greatest value of the cavitation number o corresponding to a very 
small cavity). The minimum pressure determines ~i in an ideal fluid (for bodies with sharp 
edges, values o + ~ are permitted [i, 2]). Tests (see [3-6], for example) show that apart 
from the dimensionless pressure coefficient Cp, the value of oi is heavily affected by the 
rate of flow about the body V and the size of the body D (or the Reynolds number Re and Weber 
number We constructed from V and D). The predictions of the theory of an ideal fluid stream 
differ from measurements especially for bodies characterized by flow with a separated boundary 
layer in a viscous fluid even in the absence of cavitation. However, no methods have been 
developed for calculating the scale effects associated with the inception of cavitation for 
such bodies. Here we propose a theory which makes it possible to determine the relations 
oi(Re, We) in those cases when the separated boundary layer becomes reattached to the body 
(i.e., for flow with separation bubbles). Results are presented from calculations of plane 
and axisymmetric flows for hydrofoils and nonlifting bodies and are compared with experiment- 
al data. 

It is proposed that the calculation of oi(Re, We) be broken down into the operations of 
calculation of separated flow of a viscous fluid about a body with a given Re and determination 
of the conditions of equilibrium of a cavity in the separation zone with a given We. We modi- 
fied the method described in [7] to calculate viscous separation, while the value of Cp and 
the width of the separation zone h which were calculated were used in determining oi from the 
Laplace formula 

a + Cp + 2 r - l W e  -1 = 0. (i) 

I n  t h e  g i v e n  f low scheme ( F i g .  1) t h e  r a d i u s  o f  c u r v a t u r e  o f  t h e  b o u n d a r y  o f  t h e  c a v i t y  r = 
h / 2  a t  o = o i  ( a t  l a r g e r  r t h e  c a v i t y  b e g i n s  t o  a c t  as  a b a r r i e r ,  so t h a t  t h e r e  i s  an i n c r e a s e  
i n  t h e  l e n g t h  o f  t h e  s e p a r a t i o n  zone  and a d e c r e a s e  in  I C p l ) .  

F e a t u r e s  o f  t h e  method of  c a l c u l a t i o n  o f  t h e  f low a r e  c o n n e c t e d  w i t h  t h e  s i z e  o f  t h e  
t o l e r a b l e  e r r o r  in  t h e  d e t e r m i n a t i o n  o f  t h e  q u a n t i t i e s  in  ( 1 ) .  The u s u a l  s c a t t e r  o f  m e a s u r e -  
ments  o f  ai .  w i t h  f i x e d  Re and We i s  a t  l e a s t  0 . 0 2 - 0 . 0 3 ,  w h i l e  a 20-40% change  in  We does  n o t  
t a k e  o i  o u t s i d e  t h i s  band.  S i n c e  (1)  c o n t a i n s  t h e  p r o d u c t  rWe, we can c a l c u l a t e  h and t h e  
c h a r a c t e r i s t i c  t h i c k n e s s e s  o f  t h e  b o u n d a r y  l a y e r  w i t h  r o u g h l y  t h e  same e r r o r  as  We, bu t  we 
can c a l c u l a t e  Cp w i t h  c o n s i d e r a b l y  g r e a t e r  r e l a t i v e  a c c u r a c y .  Thus ,  in  c a l c u l a t i n g  t h e  
p a r a m e t e r s  o f  t h e  f low in  t h e  s e p a r a t i o n  r e g i o n  ( i . e . ,  in  t h e  r e g i o n  of  s t r o n g  v i s c o u s - i n v i s c i d  
i n t e r a c t i o n ) ,  t h e  d i s t r i b u t i o n  o f  Cp i s  a p p r o x i m a t e d  more c a r e f u l l y  h e r e  t h a n  in  [7] and t h e  
s e p a r a t e d  b o u n d a r y  l a y e r  i s  d e s c r i b e d  in  l e s s  d e t a i l .  
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The usual assumptions for flows with viscous-inviscid interaction are made here in calcu- 
lating flows with viscous separation: subdivision of the flow about the body into viscous 
and potential flows with the use of the notion of a displacement body [7, 8]; the absence 
of a pressure gradient across the viscous layer. The viscous flow affects the potential flow 
through the shape of their common boundary, while the potential flow influences the viscous 
flow through the distribution of Cp on it. In turn, as in [7], the viscous flow is subdivided 
into the boundary layer, the wake, and the stagnation zone. The latter is separated from 
the boundary layer by the line of zero friction ~. The boundaries between these flow regions 
and the quantities in the joining conditions written on the boundaries are not known before- 
hand. Thus, strictly speaking, the calculation should be performed by successive approxima- 
tions. 

The studies [2, 8, 9] described the methods of hydrodynamic features used in the present 
calculations of potential flow, as well as the integral methods used to calculate the boundary 
layer. Here we will examine only the modification of the method in [7] used to directly cal- 
culate flow in the separation zone. As regards calculations of potential flow and the boundary 
layer, it suffices for now to remember that they are used to determine the coupled Bernoulli 
integral U2b - 1 = Cpb with the coefficient Cpb, the velocity of the potential flow Ub (on the 
boundary of the displacement body S determined in the previous approximation), and the displace- 
ment thickness 6* near the point x0, determined from local separation conditions [7, 8] and 
representing the beginning of the separation zone (in axisymmetric flow, S is the meridional 
section of the displacement body). We find x 0 from the Kochin-Loitsyanskii criterion (for 
a laminar layer) or the Bam-Zelikovich criterion (for a turbulent layer). It is also assumed 
that x0 is the origin of the line of zero friction, while the functions Ub(s) and 6*(s) are 
continuous at s = x 0 together with their first derivatives. In contrast to [7], we do not 
introduce a zone of alternating separation. Meanwhile, the two-parameter method used to cal- 
culate the turbulent boundary layer makes it possible to perform calculations up to values 
of the form factor H = 6*/6** = 35/9. 

It is known from tests that the diagram of Cp along a separation bubble consists of two 
diffuser sections and a nearly isobaric zone between them. However, the total length of the 
separation zone L, the length of the sections just mentioned, and the distribution U = (I - 
Cp) ~ are all unknown beforehand. If L and ~l and L - ~2 (the lengths of these sections 
in Fig. 2) were known, it would be possible (as in [i0]), after representing U in the form 
of a linear combination of undetermined coefficients CI, C=, ... and some unknown functions, 
to first determine these coefficients from the conditions of separation and attachment of 
the boundary layer, then correct the boundary of the displacement body S from the difference 
U - Ub, and finally find h after integrating the equation of the separated boundary layer. 

We write the local separation conditions at s = x 0 in the form 

U'~ *h+l ~ " w~ +R-7=~ (2) 

while the conditions of attachment at s = x I (where ~ is again attached to the body) are 

U ' 6 *  + 0 . 0 i 5  U = O; ( 3 )  

R ' =  O, (4) 

where k = i for the laminar layer and k = 0 for the turbulent layer; ~i = i.i, s 0 = 0.015; 
R is the distance between the boundary of the displacement body S* known from the previous 
approximation (the sample surface, to use the terminology in [2]) and the sought surface S 
on which the velocity should be equal to U; R is reckoned along an external normal to S*; 
the prime denotes differentiation along S*. 

Condition (3), similar to that used in [ii] and formally coinciding with the Bam-Zeliko- 
vich criterion, can be derived from the Prandtl equation in Clauser's form at the critical 
point on the zero-friction line with a value of 0.03 for the constant in this formula and, 
as in [7], with the use of the wake longitudinal-velocity profile 

~(~) = -o  + ( u  - ~o)(3~] ~ - 2a~)  ( 5 )  

in the separated boundary layer. Here u 0 is the velocity on ~, while q is its transverse 
coordinate referred to the thickness of the separated layer. Condition (4) ensures continuity 
of 6*' at s = x I (and thus the possibility of solving the entire problem by successive ap- 
proximations). 
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The single form of condition (3) for k = 0 and i is connected with the fact that a lami- 
nar-turbulent transition occurs in separation bubbles in the last case. 

In the presence of only the three conditions (2)-(4), it is possible to find only three 
undetermined coefficients. As in [1, 2, 7], the relationship between R and the presumably 
small dimensions U b - U(s, CI, C2, C~) can be expressed through the potential of a simple layer 

and simple formulas for linear inverse problems: 

A~ = 0; (6) 

~' : U b - -  U; (7 )  

( R U ~ "  + O~/ON : O. (8 )  

E x c l u d i n g  q - t h e  d e n s i t y  o f  t h e  p o t e n t i a l  ~ - f rom (7)  by means o f  ( 8 ) ,  we can a l s o  r e p r e -  
s e n t  R as a linear combination with the coefficients Cz, C2, and C 3. Here, (4) reduces to 
the condition of boundedness of the function qz(s) = q(s) - q0(s): 

x I 

~ ~' (qo' s) -~ ~' (qi' s)-]- 0,5 1 k (qi' s) 4- U (s) -- U b (s) ds -~ O. 

~o [ ( ~ 1  - 0 (~ -  ~o)1 ~ 
(4a) 

Here, Ik is the Cauchy density integral ql, determined at x 0 < s < x I, while the familiar 
function q0(s) is chosen so as to satisfy (8) at s = x 0. The quantity R is equal to the dif- 
ference between the values of 6" in two successive approximations (in the first approximation 
it is simply the value 6*(x0), while in the linear approximation q0(x0) = 2[6*Ub]'Is=x0). 
Picking out Ik makes it possible to later use the Keldysh-Sevod formula for regularization of 
(7). 

At s = xl, in accordance with the concept of a displacement body, the following condi- 
tion should also be satisfied: 

n = 6* ~:, (9)  

where 6*0 is the value of 6 ~ calculated in the previous approximation at s = x I (in the first 
approximation, 6n0 ~ 0). Thus, in the calculations it turns out to be convenient to express 
6" in (3) through R by means of (9) and to in turn express R(x I) through CI, C2, and C 3 with 
the use of (6)-(8). We then solve system (2)-(4a), consisting of one quadratic and two linear 
equations in these undetermined coefficients. 

After CI, C2, and C 3 are determined by means of (6)-(8), we can find S. 

We find L by means of Eq. (9), the left side of which is calculated by the above-described 
method from the difference U - Ubwith the use of linearized equations of potential theory. The 
value of 6 ~ is calculated by means of the Karman equation on s 

U6**' -~ U'5"*(2 -]- H) = 0. (10)  

Having taken the profile (5) for u above s we can write H = 35/(9 + 26u0/U). The function 
u0(s) is approximated on the basis of the measurements from [12]. 

We find the length s l in accordance with the measurements in [6, 7] and the asymptotic 
representations from [13]: 

l~ 8 5 k %  (1--k~6*(Xo) 
D -- REO,625 + 2 ReO,O3 (11)  

(the arc abscissa x0 is reckoned from the critical point). The length of the isobaric section 
s - s is determined from a variational principle similar to that formulated in [14] for 
cavitating flows: J = U26 ** is minimized at s = x I. 

Thus the overall order of the calculations after the determination of Ub, x0, s and 6" 
and 6*' at s = x0 is as follows: Eq. (9) is regarded as an equation in L and is solved by 
Newton's method; with a fixed L, the length s is chosen so that J is minimized; with fixed 
s s and L, the values of C l, C2, C 3, and R(s) are calculated and Eq. (i0) is integrated; 
the error in (9) is calculated, and so on. When the process converges, the function Cp(Re, s) 
will be determined. Then, to calculate si(Re, We), as h in Eq. (i) we take the maximum dis- 
tance between s and the surface of the body within the isobaric section of the separation zone; 
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then, having evaluated the convergence with respect to oi, we can either complete the calcula- 
tion or, having calculated the layer at s > xl and the viscous wake, proceed to a new approxima- 
tion. 

However, we used only one approximation in the given calculations, and the viscous flow 
at s > x I was not calculated. Meanwhile, as Ub we took the velocity of potential flow about 
the body itself. The edges of the body are rounded before calculating Ub only for bodies with 
sharp edges in order to ensure the smallness (compared to V) of the right side of (7), as 
in calculations of cavitation in an ideal fluid [2]. For the profiles in finding Cpb, it is 
necessary to correct the relationship between the buoyance coefficient Cy and the angle of at- 
tack ~ by means of the corrections for the effect of viscosity described in [15]. The effect 
of constraint of the flow in pipes on Ub (to compare the calculations with the measurements in 
[5, 6]) is considered by the method described in [2]. 

In the present calculations, we took U(s) in the form 

{ C~ (s - -  xo - -  l~) ~ + C2 

U (s) = C~ 

C2 + C3 (s - -  xo - -  Q)~ 

at x o ~ < s < x  o + l ~ ,  

at x ~ + l l < ~ s < x  o +  Q, 

at x o + 1 2 < s ~ < x ~ .  

(12) 

In connection with the importance of the calculation of Cp, it is best to compare calcu- 
lated and measured diagrams of pressure along the separation zone. Figure 2 offers such a 
comparison for a body with a long cylindrical part and having the diameter D = 0.05 m and 
a hemispherical nose. The experimental points were taken from [6] and were enumerated in 
the same manner as the theoretical curves (i, V = 21 m/sec; 2, V = 9 m/sec). The abscissa x 
of the cylindrical coordinate system is reckoned from the critical point. The agreement be- 
tween the theory and experiment in particular confirms the validity of Eq. (12) for U, as 
well as the adequacy of a single approximation to satisfactorily determine the dimensions 
of the separation bubble and the distribution of Cp along its boundary. Such good agreement 
is related to the relatively small thickness of the bubble in these examples. Thus, the pres- 
sure gradient across the layer makes a small contribution to the value of Cp in (i). How- 
ever, the calculating procedure described leaves open the possibility of gradual refinement 
of the position and shape of the separation zone and the parameters of the boundary layer 
ahead of it; here it is possible to make use of the experience in [2, I0] in the solution 
of nonlinear problems for developed cavitation; also, using the relations presented in [16] 
and the method described here, it would also be possible to consider the effect of a trans- 
verse pressure gradient in the Karman equations and Laplace formula - such operations do not 
cause any basic problems. 

Figure 13 compares theoretical values of oi(Re) for solids of revolution with measured 
values. The three theoretical curves pertain to three bodies with long cylindrical parts 
and identical D = 0.05 m but different noses. Curves 1 and 2 correspond to nose cones with 
cone angles of 45 and 90 ~ , while curve 3 corresponds to a DTNSRDC body, the meridional section 
of which is described by the following formula for x~[0, D/2]: 

y ---- D / 6 { 2  -~ [ l  - -  2 ( x / D  - -  i ) 2 ] ~  
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while at x = 0 a segment of the length D/3 is parallel to the y axis. The experimental points 
corresponding to curves i and 2 were taken from [5], while those for curve 3 were taken from 
[6]. A substantial part of curve I and the experimental points on it correspond to the de- 
velopment of cavitation in the zone of turbulent separation, and o[ + const with an increase 
in Re. The satisfactory agreement of curve i with the measurements in [5] indirectly confirms 
the closeness of the calculated and measured diagrams of Cp in the turbulent separation zone. 
Curves 2 and 3 correspond fully to laminary separation. At Re e 106-1.5.106 , a laminar-turbul- 
ent transition takes place on the nose of the DTNSRDC body and turbulent separation is not 
seen; for this body, IminCpl ~ 0.88. 

Figure 4 shows ai(Re) for plane flows. Curves 3 and 4 represent the results of calcula- 
tions for an NACA-16012 hydrofoil with ~ = 4 and 6 ~ . Experimental points 3 and 4 were taken 
from [4]; the value of oi constructed from the minimum of Cp (i.e., without allowance for the 
effect of viscosity and capillary) for 6 ~ , for example, would have exceeded 3. Curves and 
experimental points i and 2 correspond to symmetrical KA-4 and KA-5 hydrofoils with ~ = 0. 
Curves i and 2 in Fig. 5 for the diagrams of Cpb for these profiles show that they have the 
pressure distribution typical of sections of vanes of screw propellers (with the same local 
Reynolds numbers); D = 0.2 m for both hydrofoils. The increasing difference between the 
theory proposed here and the experimental results at Re > 106 for these hydrofoils may be 
connected not only with its approximate nature, but with the difficulty of observing very 
small cavities. 

The calculations for the KA-4 and KA-5 hydrofoils were used to check approximations (ii). 
Curve 2' corresponds to the length s reduced by half compared to that determined by (ii), 
while curve 2" corresponds to double this value; the results show that even such a change 
in s is unimportant. As regards the use of a small amount of experimental data to approxim- 
ate u0, it must be noted that, as in [7], calculation of H from the ejection equation runs 
up against the problem of assigning the mixing coefficient along the separation bubble. 

Curve 2' represents the Cp diagram at Re = 106 for the KA-5 hydrofoil. The x's on curves 
2 and 2' denote values of Cpb and Cp at the beginning of the separation zone; these values 
already differ appreciably and, as follows from (i), oi differs from ICpb] even more. Thus, 
the recommendations in [6, 15] to take ICpbl for ai are not to be followed. We could not com- 
pare the estimates of oi obtained here with other estimates since no similar calculations have 
been performed. 

Thus, qualitative agreement was obtained between calculated and measured values of oi 
for all of the bodies and hydrofoils examined, and there is good quantitative agreement for 
some of them. Consequently, there is hope for future refinement of the theory [by improving 
the method of finding H for (i0) or by increasing the number of approximations, for example] 
within the framework of the model described here. 

We thank A. V. Vasil'ev and A. N. Ivanov for their useful discussions and help in the 
work, 
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